
Certhub Documentation

Lorenz Schori

Apr 03, 2022

Contents:

1 Intro 1
1.1 Configuration . 1
1.2 State . 1
1.3 Replication . 2
1.4 Separation . 2

2 Overview 3
2.1 System architecture . 3
2.2 Controller node setup process . 5
2.3 TLS Server node setup process . 6
2.4 TLS Service setup process . 7

3 Installation 9
3.1 Dependencies . 9
3.2 Install . 9

4 Systemd Setup 11
4.1 Certhub User . 11
4.2 Directory Structure . 11
4.3 Local Repository . 12
4.4 ACME Client Setup . 13
4.5 Systemd Unit Customization . 15
4.6 Certificates . 15
4.7 Certificate Distribution . 17
4.8 Certificate export and service reload . 18
4.9 Sending certificates . 19

5 GitLab CI Setup 21
5.1 Big Picture . 21
5.2 Certificates Repository . 24
5.3 CI Pipeline Repository . 24
5.4 CI Pipeline Configuration . 25
5.5 CI Pipeline Certbot . 27
5.6 CI Pipeline Dehydrated . 27
5.7 CI Pipeline Lego . 27

6 Gitlab CI Usage 29

i

7 Man Pages 33
7.1 certhub-certbot-run . 33
7.2 certhub-dehydrated-run . 34
7.3 certhub-lego-run . 34
7.4 certhub-cert-expiry . 35
7.5 certhub-message-format . 36
7.6 certhub-send-file . 37
7.7 certhub-status-file . 37
7.8 certhub-certbot-run@.service . 37
7.9 certhub-dehydrated-run@.service . 38
7.10 certhub-lego-run@.service . 39
7.11 certhub-cert-expiry@.service . 40
7.12 certhub-cert-export@.service . 42
7.13 certhub-cert-reload@.service . 43
7.14 certhub-cert-send@.service . 43
7.15 certhub-repo-push@.service . 45
7.16 certhub-docker-entry . 46
7.17 certhub-hook-lexicon-auth . 48
7.18 certhub-hook-nsupdate-auth . 49

8 Best Practice 51
8.1 Generating TLS Keys and Signing Requests . 51
8.2 DNS Zone Setup . 52
8.3 Certificates for Internal Services . 53

9 Indices and tables 55

Index 57

ii

CHAPTER 1

Intro

Thanks to Let’s Encrypt and Certbot the number of TLS enabled sites is growing faster than ever. Transport encryption
is becoming ubiquitous leading to much better security on the user facing web.

Many of the available ACME clients (including Certbot) made it a top priority to very well support monolithic systems
which are managed manually. As a result ACME client software commonly assumes that it has access to TLS private
keys, privileged ports or the web servers configuration files in order to make the process of obtaining a certificate as
smooth as possible.

Admittedly this simplifies the life of inexperienced system administrators. But the lack of proper privilege separation
also poses a risk to the systems integrity.

Let’s Encrypt certificates have a very limited life-span of 90 days. Therefore it is crucial to automate certificate
renewal as well. Most ACME clients employ some mechanism to track the state of issued certificates and trigger a
timely renewal. In order to allow for rollbacks, ACME clients often archive previous versions of certificates in some
directory structure.

As a result some state needs to be backed up and preseeded when a system gets rebuilt. With the rise of IT automation,
containers and virtual machines are built and deployed more frequently. Keeping software state across those builds in
various vendor specific formats is inconvenient.

1.1 Configuration

Certhub strictly separates (read-only) configuration from (read-write) state. As a result it naturally integrates well with
configuration management and IT automation systems.

1.2 State

Instead of maintaining an ad-hoc directory structure of current and previous certificates, Certhub keeps track of them
using a git repository.

1

Certhub Documentation

Certhub provides a simple utility to check for certificates which are about to expire. The predefined action is to trigger
the certificate renewal job if an outdated certificate is detected. Both, the expiry check and the renewal job do operate
on temporary checkouts of the git repository.

1.3 Replication

Keeping certificates in a repository also makes it easier to replicate fresh certificates to other machines or make them
available for new deployments on a repository hosting service.

There is a large body of CI/CD systems which integrate well with git. With Certhub a certificate renewal results
in a new commit to the repository. Thus existing automation infrastructure can be leveraged to trigger builds and
deployments without hooking into ACME client software directly.

1.4 Separation

Granted that Certhub takes over state management, repository replication and expiry checks, the only thing left for the
actual ACME client is to obtain certificates.

Some ACME clients support an operation mode where access to the TLS private key is not necessary. A CSR is taken
as the input and the resulting certificate is written to an output file. This operation can be performed without elevated
privileges. Certhub currently supports Certbot, Dehydrated and Lego in unprivileged CSR mode.

Note that this mode of operation simplifies centralized certificate management where the ACME client is only installed
on one or few machines separated from the systems which are running the actual TLS servers.

2 Chapter 1. Intro

CHAPTER 2

Overview

2.1 System architecture

A typical certhub deployment consists of one Controller node hosting the ACME Client (i.e., Certbot,
Dehydrated or Lego) along with the Principal Git Repository. Multiple TLS Server nodes are used to host TLS
Services such as web servers, mail servers, databases and application servers.

The ACME Client stores certificates optained from the Certificate Authority in the Principal Git Repository. Changes
to that repo are replicated to the Local Git Repositories on the TLS Server nodes automatically.

Certificates in the Local Certificate Directory on a TLS Server node are updated automatically whenever new commits
are pushed to the Local Git Repository.

TLS Services are reloaded whenever the exported certificate in the Local Certificate Directory is modified.

Note that ACME Account Key is only needed on the Controller node (readable by the ACME Client). Also TLS
Private Keys are only deployed on the respective TLS Server nodes and are readable by their respective TLS services
exclusively.

3

Certhub Documentation

Certhub ships with a considerable number of systemd units. All of those are designed as templates. Units used for
replication to other nodes use the destination for the template instance string, all other units take a certificate base-
name as their instance string. The following diagram depicts a typical setup featuring automatic renewal, replication,
certificate export and TLS service reload.

4 Chapter 2. Overview

Certhub Documentation

2.2 Controller node setup process

In a typical certhub setup there is only one Controller node. Setting up the Controller isn’t something which is repeated
frequently.

In order to setup a new Controller node, the following steps are required. For production deployments it is recom-

2.2. Controller node setup process 5

Certhub Documentation

mended to use a configuration management system.

On the Controller node:

1. Install required software including certhub and its dependencies. Also install one of the supported ACME client.

2. Setup the local unprivileged certhub user account.

3. Generate an SSH keypair to be used for repository replication.

4. Initialize the Principal Git Repository.

5. Create the necessary directory structure including private directory for ACME Account Keys as well as config
and state directories.

6. Create or restore the ACME Account Keys for the installed ACME Client.

2.3 TLS Server node setup process

In a typical certhub setup there are more than one TLS Server node. Depending on the environment, TLS Server nodes
might get deployed regularely.

In order to setup a new TLS Server node, the following steps are required. For production deployments it is recom-
mended to use a configuration management system.

On the TLS Server node:

1. Install required software including certhub and its dependencies. Do not install any ACME client software on
TLS Server nodes.

2. Setup the local unprivileged certhub user account.

3. Initialize the Local Git Repository and create the Local Certificate Directory.

4. Authorize the certhub user on the Controller node to push to the Local Git Repository.

On the Controller node:

1. Setup systemd units responsible for replicating the Principal Git Repository to the Local Git Repository on the
new TLS Server.

6 Chapter 2. Overview

Certhub Documentation

2.4 TLS Service setup process

In a typical certhub setup there are more than one TLS Service. Depending on the environment, TLS Services might
get deployed regularely.

The following steps are needed to create a new certificate for a new TLS Service. For production deployments it is
recommended to use a configuration management system.

On the TLS Server node:

1. Generate a new TLS Private Key and Certificate Signing Request (CSCR).

2. Add a configuration file which specifies the TLS Service(s) to be reloaded whenever the certificate changes in
the Local certificate Directory.

3. Setup systemd units responsible for exporting changed certificates and reloading services.

On the Controller node:

1. Add the newly generated CSR along with ACME Client specific configuration to the certhub config directory.

2. Setup systemd units responsible for checking certificate expiry and automatic renewal.

2.4. TLS Service setup process 7

Certhub Documentation

8 Chapter 2. Overview

CHAPTER 3

Installation

3.1 Dependencies

The executables provided by certhub only depend on openssl and any of the following supported ACME clients:
Certbot, Dehydrated or Lego. Certhub includes DNS-01 challenge hooks for nsupdate and Lexicon.

In order to use the systemd units, git and git-gau is required.

3.2 Install

Navigate to the Certhub releases page and pick the latest certhub-dist.tar.gz tarball. Copy it to the target
machine and unpack it there.

$ scp dist/certhub-dist.tar.gz me@example.com:~
$ ssh me@example.com sudo tar -C /usr/local -xzf ~/certhub-dist.tar.gz

Alternatively use the following ansible task to copy and unarchive a dist tarball into /usr/local. Note that git-gau can
be installed in the same way.

- name: Certhub present
notify: Systemd reloaded
unarchive:
src: files/certhub-dist.tar.gz
dest: /usr/local

9

https://certbot.eff.org/
https://dehydrated.io/
https://github.com/go-acme/lego
https://github.com/AnalogJ/lexicon
https://github.com/znerol/git-gau
https://github.com/certhub/certhub/releases/
https://github.com/znerol/git-gau

Certhub Documentation

10 Chapter 3. Installation

CHAPTER 4

Systemd Setup

Certhub ships with a host of systemd service, timer and path units which can be combined in various ways to
satisfy different use cases.

Most of them are designed to run as an unprivileged system user. The systemd units default to certhub as the UID
as well as the primary GID. Also the home directory by default is expected to be located at /var/lib/certhub.

4.1 Certhub User

Add the certhub user and group on the target system. Use the --shell /usr/bin/git-shell option in
order to enable git repository replication.

$ sudo adduser --system --group --home /var/lib/certhub --shell /usr/bin/git-shell
→˓certhub

Same thing as an Ansible task:

- name: Certhub user present
user:
name: certhub
state: present
system: yes
home: /var/lib/certhub
shell: /usr/bin/git-shell

4.2 Directory Structure

Configuration for each certificate is expected in /etc/certhub. This directory must not be writable by the
certhub user. Any files holding secrets such as API tokens or DNS TSIG keys should be owned by root with
group certhub and permissions 0640 in order to prevent leaking information to other unprivileged processes.

11

Certhub Documentation

$ sudo mkdir /etc/certhub

- name: Certhub config directory present
file:
path: /etc/certhub
state: directory
owner: root
group: root
mode: 0755

A status directory is used to trigger certificate renewal via systemd path units. The certhub user obviously needs
write access to that directory. By default it is located at /var/lib/certhub/status.

$ sudo -u certhub mkdir /var/lib/certhub/status

- name: Certhub status directory present
file:
path: /var/lib/certhub/status
state: directory
owner: certhub
group: certhub
mode: 0755

4.3 Local Repository

By default systemd units expect the local certificate repository in /var/lib/certhub/certs.git. Also it is
recommended to at least set user.name and user.email in the git configuration of the certhub user. Some
git versions complain if push.default is not set. Thus it is best to specify that explicitly as well.

$ sudo -u certhub git config --global user.name Certhub
$ sudo -u certhub git config --global user.email certhub@$(hostname -f)
$ sudo -u certhub git config --global push.default simple
$ sudo -u certhub git init --bare /var/lib/certhub/certs.git
$ sudo -u certhub git gau-exec /var/lib/certhub/certs.git git commit --allow-empty -m
→˓'Init'

- name: Git configured
become: yes
become_user: certhub
loop:
- { name: "user.name", value: Certhub }
- { name: "user.email", value: "certhub@{{ ansible_fqdn }}" }
- { name: "push.default", value: simple}

git_config:
name: "{{ item.name }}"
value: "{{ item.value }}"
scope: global

- name: Certhub repository present
become: yes
become_user: certhub
command: >
git init --bare /var/lib/certhub/certs.git

(continues on next page)

12 Chapter 4. Systemd Setup

Certhub Documentation

(continued from previous page)

arg:
creates: /var/lib/certhub/certs.git

- name: Certhub repository initialized
become: yes
become_user: certhub
command: >
git gau-exec /home/certhub/certs.git
git commit --allow-empty -m'Init'

arg:
creates: /var/lib/certhub/certs.git/refs/heads/master

4.4 ACME Client Setup

ACME clients need a way to store Let’s Encrypt account keys. By default systemd units expect home directories for
the supported ACME clients to be inside /var/lib/certhub/private/. This directory must not be world-
readable.

$ sudo -u certhub mkdir -m 0700 /var/lib/certhub/private

- name: Certhub private directory present
file:
path: /var/lib/certhub/private
state: directory
owner: certhub
group: certhub
mode: 0700

4.4.1 Certbot Setup

Certbot needs some special configuration in order to make it run as an unprivileged user. The following configuration
directives need to be placed inside /var/lib/certhub/.config/letsencrypt/cli.ini.

Also the referenced directories should be created before running certbot for the first time.

Shell:

$ sudo -u certhub mkdir -p /var/lib/certhub/private/certbot/{work,config,logs}
$ sudo -u certhub mkdir -p /var/lib/certhub/.config/letsencrypt
$ sudo -u certhub tee /var/lib/certhub/.config/letsencrypt/cli.ini <<EOF
work-dir = /var/lib/certhub/private/certbot/work
config-dir = /var/lib/certhub/private/certbot/config
logs-dir = /var/lib/certhub/private/certbot/logs
EOF

Ansible:

- name: Certbot directory structure present
loop:
- /var/lib/certhub/.config/letsencrypt
- /var/lib/certhub/private/certhub/work
- /var/lib/certhub/private/certhub/config

(continues on next page)

4.4. ACME Client Setup 13

Certhub Documentation

(continued from previous page)

- /var/lib/certhub/private/certhub/log
file:
path: "{{ item }}"
state: directory
recursive: true
owner: certhub
group: certhub
mode: 0755

- name: Certbot cli.ini present
copy:
dest: /var/lib/certhub/.config/letsencrypt/cli.ini
owner: certhub
group: certhub
mode: 0755
content: |
work-dir = /var/lib/certhub/private/certbot/work
config-dir = /var/lib/certhub/private/certbot/config
logs-dir = /var/lib/certhub/private/certbot/logs

4.4.2 Dehydrated Setup

Shell:

$ sudo -u certhub mkdir /var/lib/certhub/private/dehydrated

Ansible:

- name: Dehydrated directory present
file:
path: /var/lib/certhub/private/dehydrated
state: directory
owner: certhub
group: certhub
mode: 0755

4.4.3 Lego Setup

Shell:

$ sudo -u certhub mkdir -p /var/lib/certhub/private/lego/{accounts,certificates}

Ansible:

- name: Lego directory structure present
loop:
- /var/lib/certhub/private/lego/accounts
- /var/lib/certhub/private/lego/certificates

file:
path: "{{ item }}"
state: directory
recursive: true
owner: certhub

(continues on next page)

14 Chapter 4. Systemd Setup

Certhub Documentation

(continued from previous page)

group: certhub
mode: 0755

4.4.4 Domain Validation

Choose the challenge method which best suits the infrastructure. DNS-01 challenge is unavoidable for wildcard
certificates. Currently DNS-01 is the only method which is supported out-of-the box by certhub and which is covered
by integration tests.

Certhub ships with DNS-01 challenge hooks for nsupdate and Lexicon. The hooks need to be configured us-
ing an environment file normally located in /etc/certhub/%i.certhub-certbot-run.env and /etc/
certhub/%i.certhub-dehydrated-run.env . An example for certbot and dehydrated configuration is part
of the integration test suite. See the manpages certhub-hook-lexicon-auth and certhub-hook-nsupdate-auth for more
detailed information about the involved environment variables.

In the case of lego the challenge method is selected using command line arguments to the lego binary, authentication
tokens are passed in via environment variables. All configuration is passed in via an environment file normally located
in /etc/certhub/%i.certhub-lego-run.env . An example configuration is part of the integration test suite.
See the manpage certhub-lego-run@.service for more detailed information about the involved environment variables.

Note that it is not recommended to specify secrets like API tokens in environment variables or command line flags.
Regrettably most of today’s software authors seem to ignore this fact. An effective way to prevent secrets from leaking
via process table is to keep them in files with tight access restrictions. Regrettably neither Lexicon nor lego do support
this approach. Thus for production grade setups it is unavoidable to either use the nsupdate method or implement
custom challenge hook scripts which are capable of reading API tokens from files.

Also note that HTTP-01 validation can be implemented quite easily if a reverse proxy serving the whole range of sites
is already in place. In this case it is enough to proxy the path .well-known/acme-challenge to the certhub
controller and then run a HTTP server and an ACME client in webroot-mode.

Refer to the following section for detailed directives on how to customize services via drop-ins.

4.5 Systemd Unit Customization

Certhub ships with systemd units which are capable of running one of the supported ACME clients in order to issue
or renew a certificate and then store it in the certificate repository.

All the units are extensively configurable via systemd unit drop-ins. Units and drop-ins shipped with certhub are
located in lib/systemd/system inside the installation prefix (usually /usr/local). Create corresponding
drop-in directories inside /etc/systemd/system and then copy over selected drop-ins in order to customize
certhub service, path and timer units.

4.6 Certificates

All systemd units are designed as templates. The instance name serves as the basename for configuration as well as
generated certificates.

In order to avoid problems it is recommended to only use characters allowed in path components. I.e., alphanumeric
plus URL-safe special characters such as the period and minus.

The following steps are required to configure a new certificate.

4.5. Systemd Unit Customization 15

https://github.com/AnalogJ/lexicon
https://github.com/certhub/certhub/tree/master/integration-test/src/travis/etc/certhub-certbot-run.env.in
https://github.com/certhub/certhub/tree/master/integration-test/src/travis/etc/certhub-dehydrated-run.env.in
https://github.com/certhub/certhub/tree/master/integration-test/src/travis/etc/certhub-lego-run.env.in
https://github.com/AnalogJ/lexicon
https://github.com/certhub/certhub/tree/master/lib/systemd

Certhub Documentation

4.6.1 CSR

Generate a CSR from the TLS servers private key. When working with Ansible use delegation to run the openssl
req command on another host than the certhub controller. Add the CSR to /etc/certhub/${DOMAIN}.csr.
pem. In simple setups it is recommended to use the domain name as the config base name.

Shell:

$ export SERVER=tls-server.example.com
$ export DOMAIN=tls-server.example.com
$ ssh "${SERVER}" sudo openssl req -new \

-key "/etc/ssl/private/${DOMAIN}.key.pem" \
-subj "/CN=${DOMAIN}" \
| sudo tee "/etc/certhub/${DOMAIN}.csr.pem"

Ansible:

- name: CSR generated
delegate_to: "{{ SERVER }}"
changed_when: false
register: csr_generated
command: >
openssl req -new
-key "/etc/ssl/private/{{ DOMAIN }}.key.pem"
-subj "/CN={{ DOMAIN }}"

- name: CSR configured
register: csr_configured
copy:
dest: "/etc/certhub/{{ DOMAIN }}.csr.pem"
content: "{{ csr_generated.stdout }}
owner: root
group: root
mode: 0644

4.6.2 ACME Client Configuration

Add additional configuration for the ACME client to one of the following files: /etc/certhub/${DOMAIN}.
certbot.ini, /etc/certhub/${DOMAIN}.dehydrated.conf or /etc/certhub/${DOMAIN}.
certhub-lego-run.env. Working examples for testing purposes are part of certhub integration tests

4.6.3 Initial Certificate

Run certhub-${ACME_CLIENT}-run@${DOMAIN}.service once in order to obtain the first certificate and
add it to the repository.

Example for ACME_CLIENT=certbot and DOMAIN=tls-server.example.com

$ export ACME_CLIENT=certbot
$ export DOMAIN=tls-server.example.com
$ sudo systemctl start "certhub-${ACME_CLIENT}-run@${DOMAIN}.service"

Ansible:

16 Chapter 4. Systemd Setup

https://docs.ansible.com/ansible/latest/user_guide/playbooks_delegation.html#delegation
https://github.com/certhub/certhub/tree/master/integration-test/src/travis/etc

Certhub Documentation

- name: Certificate issued
systemd:
name: "certhub-{{ ACME_CLIENT }}-run@{{ DOMAIN }}.service"
state: started

4.6.4 Configure Certificate Renewal

Enable and start timer and path units.

Shell:

$ export DOMAIN=tls-server.example.com
$ sudo systemctl enable --now "certhub-cert-expiry@${DOMAIN}.path"
$ sudo systemctl enable --now "certhub-cert-expiry@${DOMAIN}.timer"
$ sudo systemctl enable --now "certhub-certbot-run@${DOMAIN}.path"

Ansible:

- name: Path and timer units enabled and started
loop:
- "certhub-cert-expiry@{{ DOMAIN }}.path"
- "certhub-cert-expiry@{{ DOMAIN }}.timer"
- "certhub-certbot-run@{{ DOMAIN }}.path"

systemd:
name: "{{ item }}"
enabled: true
state: started

4.7 Certificate Distribution

In order to propagate certificates to tls servers it is recommended to mirror the repository from the certhub controller
to the respective machines. The certhub-repo-push@.service unit can be used to propagate these changes to
another host, certhub-repo-push@.path unit to trigger it automatically whenever the master branch of the
repository changes.

Note, certhub-repo-push@.service requires working SSH access via public key authentication to the remote
end.

This unit takes the full remote URL including the path as the service instance name which needs to be escaped using
systemd-escape --template. Note, when copy-pasting output from system-escape into a shell then it is
necessary to escape backslashes with an additional backslash.

Shell:

$ export REMOTE="tls-server.example.com:/var/lib/certhub/certs.git"
$ export PATH_UNIT="$(systemd-escape --template certhub-repo-push@.path ${REMOTE})"
$ export SERVICE_UNIT="$(systemd-escape --template certhub-repo-push@.service $
→˓{REMOTE})"
$ sudo systemctl enable --now "${PATH_UNIT}"
$ sudo systemctl start "${SERVICE_UNIT}"

Ansible:

4.7. Certificate Distribution 17

Certhub Documentation

tasks:
- name: Certificate distribution activated
notify: Certificate distribution run
vars:

UNIT: "{{ lookup('pipe','systemd-escape --template certhub-repo-push@.path ' +
→˓REMOTE|quote) }}"

systemd:
name: "{{ UNIT }}"
enabled: true
state: started

handlers:
- name: Certificate distribution run
vars:

UNIT: "{{ lookup('pipe','systemd-escape --template certhub-repo-push@.service '
→˓+ REMOTE|quote) }}"

systemd:
name: "{{ UNIT }}"
state: started

4.8 Certificate export and service reload

Whenever a new commit is pushed to the local repository on a tls server node, selected certificates may be exported
such that they can be used in the config of tls servers. Also affected tls services should be reloaded wenever an exported
certificate was renewed. Enable and start certhub-cert-export@.path and certhub-cert-reload@.
path in order to automate this process on tls server nodes. Both of these units take a certificate configuration basename
as their instance name.

All units which should be reloaded whenever the exported certificate changes should be listed in /etc/certhub/
${DOMAIN}.services-reload.txt.

The default destination for exported certificates is /var/lib/certhub/certs.

Shell:

$ export DOMAIN=tls-server.example.com
$ sudo -u certhub mkdir /var/lib/certhub/certs
$ sudo tee "/etc/certhub/${DOMAIN}.services-reload.txt" <<EOF
nginx.service
EOF
$ sudo systemctl enable --now "certhub-cert-export@${DOMAIN}.path"
$ sudo systemctl enable --now "certhub-cert-reload@${DOMAIN}.path"
$ sudo systemctl start "certhub-cert-export@${DOMAIN}.service"

Ansible:

tasks:
- name: Certhub certificate directory exists
file:

path: /var/lib/certhub/certs
state: directory
owner: certhub
group: certhub
mode: 0755

(continues on next page)

18 Chapter 4. Systemd Setup

Certhub Documentation

(continued from previous page)

- name: Service reload configuration
copy:

dest: "/etc/certhub/{{ DOMAIN }}.services-reload.txt"
owner: root
group: root
mode: 0644
content: |
nginx.service

- name: Certificate export and service reload path units enabled and started
notify: Certificate exported
loop:

- "certhub-cert-export@{{ DOMAIN }}.path"
- "certhub-cert-reload@{{ DOMAIN }}.path"

systemd:
name: "{{ item }}"
enabled: true
state: started

handlers:
- name: Certificate exported
systemd:
name: "certhub-cert-export@{{ DOMAIN }}.service"
state: started

4.9 Sending certificates

Similar to the export/reload scenario described above, it is also possible to send exported certificates to another desti-
nation/process. Enable and start certhub-cert-export@.path and certhub-cert-send@.path in order
to automate this process. Both of these units take a certificate configuration basename as their instance name.

List all destinations the certificate should be sent to in /etc/certhub/${DOMAIN}.destinations-send.
txt. By default the certificate will be sent using the mail command. This can be changed using the
CERTHUB_CERT_SEND_COMMAND. A good place to specify the variable is, e.g., /etc/certhub/%i.
certhub-cert-send.env .

Note that the certificate is written to stdin of the specified command. Hence it is quite easy to send it to remote
scripts using ssh.

Shell:

$ export DOMAIN=tls-server.example.com
$ sudo -u certhub mkdir /var/lib/certhub/certs
$ sudo tee "/etc/certhub/${DOMAIN}.destinations-send.txt" <<EOF
audit@example.com
EOF
$ sudo systemctl enable --now "certhub-cert-export@${DOMAIN}.path"
$ sudo systemctl enable --now "certhub-cert-send@${DOMAIN}.path"
$ sudo systemctl start "certhub-cert-export@${DOMAIN}.service"

Ansible:

tasks:
- name: Certhub certificate directory exists
file:

(continues on next page)

4.9. Sending certificates 19

Certhub Documentation

(continued from previous page)

path: /var/lib/certhub/certs
state: directory
owner: certhub
group: certhub
mode: 0755

- name: Certificate send configuration
copy:

dest: "/etc/certhub/{{ DOMAIN }}.destinations-send.txt"
owner: root
group: root
mode: 0644
content: |
audit@example.com

- name: Certificate export and send path units enabled and started
notify: Certificate exported
loop:

- "certhub-cert-export@{{ DOMAIN }}.path"
- "certhub-cert-send@{{ DOMAIN }}.path"

systemd:
name: "{{ item }}"
enabled: true
state: started

handlers:
- name: Certificate exported
systemd:
name: "certhub-cert-export@{{ DOMAIN }}.service"
state: started

20 Chapter 4. Systemd Setup

CHAPTER 5

GitLab CI Setup

Certhub provides official docker images which can be used as part of a CI pipeline to generate and renew certificates.
The images are designed to be fully configurable via environment variables.

Hint: A working demo setup can be found on gitlab.com/certhub-gitlab-demo

Caution: Do not use public/shared CI runners when generating production certificates.

5.1 Big Picture

A typical setup consists of two repositories. One for the CI pipeline (i.e., the Certhub Controller) and a second one for
the certificates.

21

https://hub.docker.com/r/certhub/certhub
https://gitlab.com/certhub-gitlab-demo

Certhub Documentation

The CI pipeline itself consists of two jobs: Cert issue/renew which only runs when triggered and Expiry check which
only runs when scheduled. If the Expiry Check job detects that a certificate is about to expire, it triggers the Cert
issue/renew job.

22 Chapter 5. GitLab CI Setup

https://gitlab.com/certhub-gitlab-demo

Certhub Documentation

If the Cert isuse/renew job successfully optains a certificate, it gets pushed to the certificate repository.

5.1. Big Picture 23

https://gitlab.com/certhub-gitlab-demo/certbot/-/jobs

Certhub Documentation

5.2 Certificates Repository

In order to setup the certificate repository on gitlab, follow these steps:

1. first create a new project and initialize the repository with a first commit. E.g., add a README file linking to
this guide.

2. Generate a new SSH key pair and add the public part as a deploy key to the newly created certificates project.
Store the private part of the key in a safe place.

Hint: There are many options to deploy certificates pushed to this repository. Some ideas:

• Setup repository mirroring to push certificates to certhub nodes.

• Trigger other CI Pipelines to rebuild and deploy applications / docker images.

• Setup Webhooks to notify the sysops team.

5.3 CI Pipeline Repository

In order to setup the controller repository and its CI pipeline follow these steps:

24 Chapter 5. GitLab CI Setup

https://gitlab.com/certhub-gitlab-demo/certs/commit/06b8cb40f85509012283ecdaad32e13c5b7b5ce2
https://docs.gitlab.com/ee/ssh/#per-repository-deploy-keys
https://docs.gitlab.com/ee/workflow/repository_mirroring.html#pushing-to-a-remote-repository-core
https://docs.gitlab.com/ee/ci/triggers/#triggering-a-pipeline
https://docs.gitlab.com/ee/user/project/integrations/webhooks.html

Certhub Documentation

1. First create a new project and initialize the repository with a first commit. E.g., add a README file linking to
this guide.

2. Add a new trigger and copy the resulting token.

3. Navigate to environment variables section and add the trigger token to a new variable named
PRIVATE_PIPELINE_TOKEN. Also add the private part of the deploy key as a variable with the name
PRIVATE_SSH_KEY.

4. Optional but recommended: Enable the Protected option on those variables and setup branch protection for the
master branch in order to reduce the risk of leaking credentials.

5.4 CI Pipeline Configuration

Use one of certhub/certhub:certbot , certhub/certhub:dehydrated or certhub/
certhub:lego as the base image depending on preference and integration needs. In order to simplify
interaction with DNS providers, lexicon is packaged with all images except for the lego-one.

The following code example represents the overall architecture of the CI pipeline. The global variables section
contains connection parameters for the certificates repository, as well as variables defining the repository structure.
Note that the CERT_SLUG variable will typically be defined manually in the GUI when issuing renewing a certificate
for the first time or when setting up a scheduled job. Refer to the variables section of git-gau-docker-entry.1 and the
certhub Man Pages for detailed information about available environment variables.

The Cert issue/renew job is configured to be skipped in a scheduled pipeline run, and it is only executed when
CERT_SLUG environment variable is set (See only/except docs for more information). The commit message can

5.4. CI Pipeline Configuration 25

https://docs.gitlab.com/ee/ci/triggers/#adding-a-new-trigger
https://docs.gitlab.com/ee/ci/variables/#via-the-ui
https://docs.gitlab.com/ee/user/project/protected_branches.html
https://pypi.org/project/dns-lexicon/
https://github.com/znerol/git-gau/blob/master/doc/git-gau-docker-entry.1.md#variables
https://docs.gitlab.com/ee/ci/yaml/#onlyexcept-advanced

Certhub Documentation

be customized using variables used by certhub-message-format. Note that the git commits are attributed to the user
which triggered a pipeline by leveraging predefined variables GITLAB_USER_NAME and GITLAB_USER_EMAIL.

The Expiry check job on the other hand is configured to only run in a scheduled pipeline. The only responsibility is to
trigger the CI pipeline whenever the certificate pointed to by CERT_SLUG is about to expire. Refer to certhub-cert-
expiry for information about available configuration options via environment variables.

image: certhub/certhub:certbot
#image: certhub/certhub:dehydrated
#image: certhub/certhub:lego

variables:
1. Change Git URL of the certificates repository.
GAU_REPO: git@gitlab.com:certhub-gitlab-demo/certs.git
GAU_SSH_PRIVKEY: "${PRIVATE_SSH_KEY}"
2. Use ssh-keyscan to determine the SSH keys of the machine hosting the
certificates repository.
GAU_SSH_KNOWNHOSTS: |
gitlab.com ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIAfuCHKVTjquxvt6CM6tdG4SLp1Btn/

→˓nOeHHE5UOzRdf
gitlab.com ssh-rsa

→˓AAAAB3NzaC1yc2EAAAADAQABAAABAQCsj2bNKTBSpIYDEGk9KxsGh3mySTRgMtXL583qmBpzeQ+jqCMRgBqB98u3z++J1sKlXHWfM9dyhSevkMwSbhoR8XIq/
→˓U0tCNyokEi/ueaBMCvbcTHhO7FcwzY92WK4Yt0aGROY5qX2UKSeOvuP4D6TPqKF1onrSzH9bx9XUf2lEdWT/
→˓ia1NEKjunUqu1xOB/StKDHMoX4/OKyIzuS0q/
→˓T1zOATthvasJFoPrAjkohTyaDUz2LN5JoH839hViyEG82yB+MjcFV5MU3N1l1QL3cVUCh93xSaua1N85qivl+siMkPGbO5xR/
→˓En4iEY6K2XPASUEMaieWVNTRCtJ4S8H+9

gitlab.com ecdsa-sha2-nistp256
→˓AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBFSMqzJeV9rUzU4kWitGjeR4PWSa29SPqJ1fVkhtj3Hw9xjLVXVYrU9QlYWrOLXBpQ6KWjbjTDTdDkoohFzgbEY=
CERTHUB_CERT_PATH: "{WORKDIR}/${CERT_SLUG}.fullchain.pem"
CERTHUB_CSR_PATH: "${CERT_SLUG}.csr.pem"
CERTHUB_CERT_EXPIRY_TTL: 2592000

Cert issue/renew:
stage: build

only:
variables:

- $CERT_SLUG

except:
refs:

- schedules

variables:
CERTHUB_MESSAGE_SUBJECT_ACTION: "Issue/renew ${CERT_SLUG}"

3. Configuration for acme client goes here
[...]

before_script:
- git config user.name "${GITLAB_USER_NAME}"
- git config user.email "${GITLAB_USER_EMAIL}"

script:
- >

git gau-ac
git gau-xargs -I{WORKDIR}

(continues on next page)

26 Chapter 5. GitLab CI Setup

https://docs.gitlab.com/ee/ci/variables/predefined_variables.html

Certhub Documentation

(continued from previous page)

certhub-message-format "${CERTHUB_CERT_PATH}" x509
4. Invocation of acme client goes here
[...]

Expiry check:
stage: build

only:
variables:

- $CERT_SLUG
refs:
- schedules

variables:
PIPELINE_TOKEN: "${PRIVATE_PIPELINE_TOKEN}"

script:
- >

git gau-xargs -I{WORKDIR}
certhub-cert-expiry "${CERTHUB_CERT_PATH}" "${CERTHUB_CERT_EXPIRY_TTL}"
curl -X POST -F "token=${PIPELINE_TOKEN}" -F "ref=${CI_COMMIT_REF_NAME}" -F

→˓"variables[CERT_SLUG]=${CERT_SLUG}" "${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/
→˓trigger/pipeline"

5.5 CI Pipeline Certbot

This section needs work. Please refer to the certbot example on gitlab.com and certhub-docker-entry.

5.6 CI Pipeline Dehydrated

This section needs work. Please refer to the dehydrated example on gitlab.com and certhub-docker-entry.

5.7 CI Pipeline Lego

This section needs work. Please refer to the lego example on gitlab.com and certhub-docker-entry.

5.5. CI Pipeline Certbot 27

https://gitlab.com/certhub-gitlab-demo/certbot/blob/master/.gitlab-ci.yml
https://gitlab.com/certhub-gitlab-demo/dehydrated/blob/master/.gitlab-ci.yml
https://gitlab.com/certhub-gitlab-demo/lego/blob/master/.gitlab-ci.yml

Certhub Documentation

28 Chapter 5. GitLab CI Setup

CHAPTER 6

Gitlab CI Usage

In order to setup a new certificate follow these steps:

1. Generate a new private key and a CSR. Store the private key in a safe place and deploy it to the servers / services
where the certificate will be used.

2. Add the CSR to the repository (file extension: .csr.pem). Note the basename, this will be used as the value
of the CERT_SLUG variable in subsequent steps.

3. Add acme client specific configuration files to the repository if necessary, (e.g., $CERT_SLUG.certbot.ini
or $CERT_SLUG.dehydrated.conf).

4. Run the CI pipeline once manually, set the variable CERT_SLUG in the GUI:

29

Certhub Documentation

5. Add a schedule if the pipeline was successfull.

30 Chapter 6. Gitlab CI Usage

Certhub Documentation

6. Expiry checks can also be triggered manually from the schedule overview page.

31

Certhub Documentation

32 Chapter 6. Gitlab CI Usage

CHAPTER 7

Man Pages

7.1 certhub-certbot-run

7.1.1 Synopsis

certhub-certbot-run <output-cert-file> <input-csr-file> <certbot> [certbot-certonly-args . . .]

7.1.2 Description

Runs the given certbot binary with CSR read from <input-csr-file>. Writes the resulting certificate to the
<output-cert-file> as well.

7.1.3 Examples

Run certbot certonly with CSR from the configuration directory. Resulting fullchain certificate is committed
to the repository.

git gau-exec /var/lib/certhub/certs.git \
git gau-ac \
git gau-xargs -I{} \
certhub-message-format {}/example.com.fullchain.pem x509 \
certhub-certbot-run {}/example.com.fullchain.pem /etc/certhub/example.com.csr.pem \
certbot --config /etc/certhub/example.com.certbot.ini

7.1.4 See Also

certbot(1), certhub-message-format(1)

33

Certhub Documentation

7.2 certhub-dehydrated-run

7.2.1 Synopsis

certhub-dehydrated-run <output-cert-file> <input-csr-file> <dehydrated> [dehydrated-args . . .]

7.2.2 Description

Runs the given dehydrated binary with CSR read from <input-csr-file> Writes the resulting certificate to
the <output-cert-file>.

7.2.3 Examples

Run dehydrated --signcsr with CSR from the configuration directory. Resulting fullchain certificate is com-
mitted to the repository.

git gau-exec /var/lib/certhub/certs.git \
git gau-ac \
git gau-xargs -I{} \
certhub-message-format {}/example.com.fullchain.pem x509 \
certhub-dehydrated-run {}/example.com.fullchain.pem /etc/certhub/example.com.csr.pem \
dehydrated --config /etc/certhub/example.com.dehydrated.conf

7.2.4 See Also

dehydrated(1), certhub-message-format(1)

7.3 certhub-lego-run

7.3.1 Synopsis

certhub-lego-run <output-cert-file> <input-csr-file> <lego-directory> <lego> [lego-run-args . . .]

certhub-lego-run-preferred-chain <preferred-chain> <output-cert-file> <input-csr-file> <lego-directory> <lego>
[lego-run-args . . .]

7.3.2 Description

Runs the given lego binary with CSR read from <input-csr-file>. Writes the resulting certificate to the
<output-cert-file>.

Note, <lego-directory> must point to the directory where lego stores account data and certificates (usually
$HOME/.lego).

In order to specify the preferred-chain, use the certhub-lego-run-preferred-chain binary and specify the
CN of the preferred root certificate as the first argument.

34 Chapter 7. Man Pages

Certhub Documentation

7.3.3 Examples

Run lego run with CSR from configuration directory. Resulting fullchain certificate is committed to the repository.

git gau-exec /var/lib/certhub/certs.git \
git gau-ac \
git gau-xargs -I{} \
certhub-message-format {}/example.com.fullchain.pem x509 \
certhub-lego-run {}/example.com.fullchain.pem /etc/certhub/example.com.csr.pem /var/
→˓lib/certhub/private/lego \
lego --accept-tos --email hello@example.com

Run lego run with CSR from configuration directory and request a certificate with the alternate/short Let’s Encrypt
certificate chain. Resulting fullchain certificate is committed to the repository.

git gau-exec /var/lib/certhub/certs.git \
git gau-ac \
git gau-xargs -I{} \
certhub-message-format {}/example.com.fullchain.pem x509 \
certhub-lego-run-preferred-chain "ISRG Root X1" {}/example.com.fullchain.pem /etc/
→˓certhub/example.com.csr.pem /var/lib/certhub/private/lego \
lego --accept-tos --email hello@example.com

7.3.4 See Also

certhub-message-format(1)

7.4 certhub-cert-expiry

7.4.1 Synopsis

certhub-cert-expiry <input-cert-file> <seconds> <command> [args . . .]

7.4.2 Description

If the given certificate is about to expire in the given amount of seconds, run the command.

Common values for the ttl parameter:

86400 Twenty four hours.

604800 7 days.

2592000 30 days.

7.4.3 Examples

Run certhub-cert-expiry with certificate read from the repository. Format a message containing information
about the certificate and write it to the status file if its expiration date is within 30 days.

7.4. certhub-cert-expiry 35

Certhub Documentation

git gau-exec /var/lib/certhub/certs.git \
git gau-xargs -I{} \
certhub-status-file /var/lib/certhub/status/example.com.expiry.status
certhub-cert-expiry "{}/example.com.fullchain.pem" 2592000 \
certhub-message-format "{}/example.com.fullchain.pem" x509 \
echo "Certificate will expire within 30 days"

7.4.4 See Also

certhub-status-file(1)

7.5 certhub-message-format

7.5.1 Synopsis

certhub-message-format <input-pem-file> [x509|req] <command> [args . . .]

7.5.2 Description

Runs the specified <command> and capture its standard output and standard error. Formats the output in a way which
suites git-commit / git-gau-ac. Also attaches CSR or certificate details if the specified <input-pem-file>
exists.

Use this command in combination with certhub-certbot-run and git-gau-exec / git-gau-ac when
adding / renewing certificates in an automated way.

7.5.3 Environment

CERTHUB_MESSAGE_SUBJECT
First line of the message. By default this is generated automatically.

CERTHUB_MESSAGE_SUBJECT_PREFIX
Message prefix when automated subject generation is enabled. Defaults to [Certhub].

CERTHUB_MESSAGE_SUBJECT_ACTION
Message action name when automated subject generation is enabled. Defaults to basename of executed com-
mand.

CERTHUB_MESSAGE_CSR_TEXTOPTS
Output options as understood by openssl req. Defaults to: --noout -text -reqopt no_pubkey,
no_sigdump

CERTHUB_MESSAGE_CERT_TEXTOPTS
Output options as understood by openssl x509. Defaults to: --noout -text -certopt
no_pubkey,no_sigdump,no_extensions -sha256 -fingerprint

7.5.4 See Also

certhub-certbot-run(1)

36 Chapter 7. Man Pages

Certhub Documentation

7.6 certhub-send-file

7.6.1 Synopsis

certhub-send-file <input-file> <command> [args . . .]

7.6.2 Description

Pipes the given file to standard input of the specified <command>.

7.7 certhub-status-file

7.7.1 Synopsis

certhub-status-file <output-status-file> <command> [args . . .]

7.7.2 Description

Runs the specified <command> and capture its standard output. Writes the output to the specified status file. Removes
the status file if command doesn’t output anything.

Use this command in combination with certhub-cert-expiry in order to flag certificates which are about to
expire.

7.7.3 See Also

certhub-cert-expiry(1)

7.8 certhub-certbot-run@.service

7.8.1 Synopsis

certhub-certbot-run@.service

certhub-certbot-run@.path

7.8.2 Description

A service which runs certhub-certbot-run with a CSR read from the config directory. The resulting fullchain
certificate is committed to the repository. A commit message is generated automatically.

A path unit which runs the service unit if the expiry status file managed by certhub-cert-expiry@.service
exists or if the CSR file changed.

The instance name (systemd instance string specifier %i) is used as the basename of the configuration and the resulting
certificate file.

7.6. certhub-send-file 37

Certhub Documentation

7.8.3 Environment

CERTHUB_REPO
URL of the repository where certificates are stored. Defaults to: /var/lib/certhub/certs.git

CERTHUB_CERT_PATH
Path to the certificate file inside the repository. Defaults to: {WORKDIR}/%i.fullchain.pem

CERTHUB_CSR_PATH
Path to the CSR file. Defaults to: /etc/certhub/%i.csr.pem

CERTHUB_CERTBOT_ARGS
Additional Arguments for certbot certonly run. Defaults to: --non-interactive

CERTHUB_CERTBOT_CONFIG
Path to a certbot configuration file. Defaults to: /etc/certhub/%i.certbot.ini

7.8.4 Files

/etc/certhub/env
Optional environment file shared by all instances and certhub services.

/etc/certhub/%i.env
Optional per-instance environment file shared by all certhub services.

/etc/certhub/certhub-certbot-run.env
Optional per-service environment file shared by all certhub service instances.

/etc/certhub/%i.certhub-certbot-run.env
Optional per-instance and per-service environment file.

7.8.5 See Also

certhub-cert-expiry@.service, certhub-certbot-run(1), certhub-message-format(1)

7.9 certhub-dehydrated-run@.service

7.9.1 Synopsis

certhub-dehydrated-run@.service

certhub-dehydrated-run@.path

7.9.2 Description

A service which runs certhub-dehydrated-run with a CSR read from the config directory. The resulting
fullchain certificate is committed to the repository. A commit message is generated automatically.

A path unit which runs the service unit if the expiry status file managed by certhub-cert-expiry@.service
exists or if the CSR file changed.

The instance name (systemd instance string specifier %i) is used as the basename of the configuration and the resulting
certificate file.

38 Chapter 7. Man Pages

Certhub Documentation

7.9.3 Environment

CERTHUB_REPO
URL of the repository where certificates are stored. Defaults to: /var/lib/certhub/certs.git

CERTHUB_CERT_PATH
Path to the certificate file inside the repository. Defaults to: {WORKDIR}/%i.fullchain.pem

CERTHUB_CSR_PATH
Path to the CSR file. Defaults to: /etc/certhub/%i.csr.pem

CERTHUB_DEHYDRATED_ARGS
Additional Arguments for dehydrated --signcsr run. Empty by default.

CERTHUB_DEHYDRATED_CONFIG
Path to a dehydrated configuration file. Defaults to: /etc/certhub/%i.dehydrated.conf

7.9.4 Files

/etc/certhub/env
Optional environment file shared by all instances and certhub services.

/etc/certhub/%i.env
Optional per-instance environment file shared by all certhub services.

/etc/certhub/certhub-dehydrated-run.env
Optional per-service environment file shared by all certhub service instances.

/etc/certhub/%i.certhub-dehydrated-run.env
Optional per-instance and per-service environment file.

7.9.5 See Also

certhub-cert-expiry@.service, certhub-dehydrated-run(1), certhub-message-format(1)

7.10 certhub-lego-run@.service

7.10.1 Synopsis

certhub-lego-run@.service

certhub-lego-run@.path

7.10.2 Description

A service which runs certhub-lego-run with a CSR read from the config directory. The resulting fullchain
certificate is committed to the repository. A commit message is generated automatically.

A path unit which runs the service unit if the expiry status file managed by certhub-cert-expiry@.service
exists or if the CSR file changed.

The instance name (systemd instance string specifier %i) is used as the basename of the configuration and the resulting
certificate file.

7.10. certhub-lego-run@.service 39

Certhub Documentation

7.10.3 Environment

CERTHUB_REPO
URL of the repository where certificates are stored. Defaults to: /var/lib/certhub/certs.git

CERTHUB_CERT_PATH
Path to the certificate file inside the repository. Defaults to: {WORKDIR}/%i.fullchain.pem

CERTHUB_CSR_PATH
Path to the CSR file. Defaults to: /etc/certhub/%i.csr.pem

CERTHUB_LEGO_ARGS
Additional Arguments for lego --csr run. Empty by default.

CERTHUB_LEGO_PREFERRED_CHAIN
Set the preferred certificate chain. If the CA offers multiple certificate chains, prefer the chain whose topmost
certificate was issued from this Subject Common Name. If no match, the default offered chain will be used.
Empty by default.

Specify CERTHUB_LEGO_PREFERRED_CHAIN=ISRG Root X1 in one of the envfiles listed in the next
section to use the alternate/short Let’s Encrypt chain.

CERTHUB_LEGO_CHALLENGE_ARGS
Use this environment variable to select a challenge method. Empty by default. Lego will fall back to HTTP-01
challenge if this variable is not set.

CERTHUB_LEGO_DIR
The path to the directory where lego stores accound data and issued certificates. Defaults to: var/lib/
certhub/private/lego

7.10.4 Files

/etc/certhub/env
Optional environment file shared by all instances and certhub services.

/etc/certhub/%i.env
Optional per-instance environment file shared by all certhub services.

/etc/certhub/certhub-lego-run.env
Optional per-service environment file shared by all certhub service instances.

/etc/certhub/%i.certhub-lego-run.env
Optional per-instance and per-service environment file.

7.10.5 See Also

certhub-cert-expiry@.service, certhub-lego-run(1), certhub-message-format(1)

7.11 certhub-cert-expiry@.service

7.11.1 Synopsis

certhub-cert-expiry@.service

certhub-cert-expiry@.path

40 Chapter 7. Man Pages

Certhub Documentation

certhub-cert-expiry@.timer

7.11.2 Description

A service which checks validity of a certificate read from the repository. Formats a message and writes it to a status
file if the respective certificate is about to expire.

A path unit which runs the service unit whenever the master branch of the local certhub repository is updated.

A timer unit which runs the service twice daily.

The instance name (systemd instance string specifier %i) is used as the basename of the certificate file and the resulting
status message.

7.11.3 Environment

CERTHUB_REPO
URL of the repository where certificates are stored. Defaults to: /var/lib/certhub/certs.git

CERTHUB_CERT_PATH
Path to the certificate file inside the repository. Defaults to: {WORKDIR}/%i.fullchain.pem

CERTHUB_CERT_EXPIRY_TTL
See manpage:certhub-cert-expiry(1), defaults to 30 days in seconds, i.e. 2592000

CERTHUB_CERT_EXPIRY_MESSAGE
Message written to the status file if certificate is about to expire. Defaults to Certificate will expire
within 30 days

CERTHUB_CERT_EXPIRY_STATUSFILE
Location of status file written if a certificate is about to expire. Defaults to: /var/lib/certhub/status/
%i.expiry.status

7.11.4 Files

/etc/certhub/env
Optional environment file shared by all instances and certhub services.

/etc/certhub/%i.env
Optional per-instance environment file shared by all certhub services.

/etc/certhub/certhub-cert-expiry.env
Optional per-service environment file shared by all certhub service instances.

/etc/certhub/%i.certhub-cert-expiry.env
Optional per-instance and per-service environment file.

7.11.5 See Also

certhub-cert-expiry(1), certhub-format-message(1), certhub-status-file(1)

7.11. certhub-cert-expiry@.service 41

Certhub Documentation

7.12 certhub-cert-export@.service

7.12.1 Synopsis

certhub-cert-export@.service

certhub-cert-export@.path

7.12.2 Description

A service which copies a certificate from the repository to the local filesystem.

A path unit which runs the service unit whenever the master branch of the local certhub repository is updated.

The instance name (systemd instance string specifier %i) is used as the basename of the configuration and the resulting
certificate file.

7.12.3 Environment

CERTHUB_REPO
URL of the repository where certificates are stored. Defaults to: /var/lib/certhub/certs.git

CERTHUB_CERT_EXPORT_SRC
File / directory inside the repository which should be exported. Defaults to: {WORKDIR}/%i.fullchain.
pem

CERTHUB_CERT_EXPORT_DEST
File / directory where the certificate should be placed. Defaults to: /var/lib/certhub/certs/%i.
fullchain.pem

CERTHUB_CERT_EXPORT_RSYNC_ARGS
Arguments for rsync. Defaults to: --checksum --delete --devices --links --perms
--recursive --specials --verbose

7.12.4 Files

/etc/certhub/env
Optional environment file shared by all instances and certhub services.

/etc/certhub/%i.env
Optional per-instance environment file shared by all certhub services.

/etc/certhub/certhub-cert-export.env
Optional per-service environment file shared by all certhub service instances.

/etc/certhub/%i.certhub-cert-export.env
Optional per-instance and per-service environment file.

7.12.5 See Also

rsync(1)

42 Chapter 7. Man Pages

Certhub Documentation

7.13 certhub-cert-reload@.service

7.13.1 Synopsis

certhub-cert-reload@.service

certhub-cert-reload@.path

7.13.2 Description

A service which reloads specified tls servers.

A path unit which runs the service unit whenever the exported certificate has changed on the filesystem.

The instance name (systemd instance string specifier %i) is used as the basename of the configuration and the certifi-
cate file.

7.13.3 Environment

CERTHUB_CERT_RELOAD_CONFIG
Path to a file containing the services to reload. Defaults to: /etc/certhub/%i.services-reload.txt

CERTHUB_CERT_RELOAD_COMMAND
A systemctl subcommand to execute when a service needs to be reloaded. Useful values include reload,
restart, try-restart, reload-or-restart, try-reload-or-restart. Defaults to reload.

7.13.4 Files

/etc/certhub/env
Optional environment file shared by all instances and certhub services.

/etc/certhub/%i.env
Optional per-instance environment file shared by all certhub services.

/etc/certhub/certhub-cert-reload.env
Optional per-service environment file shared by all certhub service instances.

/etc/certhub/%i.certhub-cert-reload.env
Optional per-instance and per-service environment file.

7.13.5 See Also

certhub-cert-export@.service(8)

7.14 certhub-cert-send@.service

7.14.1 Synopsis

certhub-cert-send@.service

certhub-cert-send@.path

7.13. certhub-cert-reload@.service 43

Certhub Documentation

7.14.2 Description

A service which a sends certificate to predefined destinations. The specified command line is executed once for each
destination with the certificate piped to stdin.

A path unit which runs the service unit whenever the exported certificate has changed on the filesystem.

The instance name (systemd instance string specifier %i) is used as the basename of the configuration and the certifi-
cate file.

7.14.3 Environment

CERTHUB_CERT_SEND_SRC
Path to the certificate file to be sent. Defaults to: /var/lib/certhub/certs/%i.fullchain.pem

CERTHUB_CERT_SEND_CONFIG
Path to a file containing destinations for the certificate send service. /etc/certhub/%i.
destinations-send.txt

CERTHUB_CERT_SEND_COMMAND
Command to execute for each predefined destination. Use %i to reference the instance name. The command is
run once for each line in the %i.destinations-send.txt config file, the line can be referenced with the
{DESTINATION}} placeholder.

Defaults to: mail -s '[Certhub] Issue/renew %i' {DESTINATION}

7.14.4 Examples

Configuration file (placed in /etc/certhub/%i.destinations-send.txt) containing one destination to
send the certificate to root@localhost whenever a new one has been exported.

root@localhost

7.14.5 Files

/etc/certhub/env
Optional environment file shared by all instances and certhub services.

/etc/certhub/%i.env
Optional per-instance environment file shared by all certhub services.

/etc/certhub/certhub-cert-send.env
Optional per-service environment file shared by all certhub service instances.

/etc/certhub/%i.certhub-cert-send.env
Optional per-instance and per-service environment file.

7.14.6 See Also

certhub-cert-export@.service(8)

44 Chapter 7. Man Pages

Certhub Documentation

7.15 certhub-repo-push@.service

7.15.1 Synopsis

certhub-repo-push@.service

certhub-repo-push@.path

7.15.2 Description

A service which pushes the certhub repository to another host.

A path unit which runs the service unit whenever the master branch of the local certhub repository is updated.

The unescaped instance name (systemd unescaped instance string specifier %I) is used as the URL for the remote
repository. Note that the instance name likely needs to be escaped using systemd-escape --template.

7.15.3 Environment

CERTHUB_REPO
URL of the repository where certificates are stored. Defaults to: /var/lib/certhub/certs.git

CERTHUB_REPO_PUSH_REMOTE
URL of the remote repository. Defaults to: CERTHUB_REPO_PUSH_REMOTE=%I

CERTHUB_REPO_PUSH_ARGS
Arguments to the git push command. Defaults to: --mirror

CERTHUB_REPO_PUSH_REFSPEC
Refspec for the git push command. Empty by default.

7.15.4 Files

/etc/certhub/env
Optional environment file shared by all instances and certhub services.

/etc/certhub/%i.env
Optional per-instance environment file shared by all certhub services.

/etc/certhub/certhub-repo-push.env
Optional per-service environment file shared by all certhub service instances.

/etc/certhub/%i.certhub-repo-push.env
Optional per-instance and per-service environment file.

7.15.5 See Also

git-push(1)

7.15. certhub-repo-push@.service 45

Certhub Documentation

7.16 certhub-docker-entry

7.16.1 Synopsis

/usr/local/lib/git-gau/docker-entry.d/60-acme-dns-registration

/usr/local/lib/git-gau/docker-entry.d/60-certbot-account

/usr/local/lib/git-gau/docker-entry.d/60-dehydrated-account

/usr/local/lib/git-gau/docker-entry.d/60-lego-account

7.16.2 Description

A collection of docker entrypoint scripts called by git-gau docker-entry via run-parts. Useful to setup preex-
isting ACME accounts from data passed into a container by environment variables.

Refer to git-gau-docker-entry(8) for more information on the entrypoint scripts shipping with git-gau. Note
that for common use cases GAU_REPO should point to the certhub certificate repository.

7.16.3 Environment (acme-dns)

It is recommended to specify CERTHUB_ACME_DNS_REGISTRATION for a production setup when using
joohoi/acme-dns.

CERTHUB_ACME_DNS_REGISTRATION
Contents of the JSON registration file as generated by goacmedns-register which is part of
cpu/goacmedns. Note that more than one account can be registered/represented in a single JSON data struc-
ture.

CERTHUB_ACME_DNS_REGISTRATION_FILE
Full path to registration json file. Defaults to ${HOME}/acme-dns-registration.json.

7.16.4 Environment (Certbot)

It is recommended to specify CERTHUB_CERTBOT_ACCOUNT_ID, CERTHUB_CERTBOT_ACCOUNT_KEY ,
CERTHUB_CERTBOT_ACCOUNT_REGR and CERTHUB_CERTBOT_ACCOUNT_META for a production setup. The
remaining variables can be ignored in most situations.

CERTHUB_CERTBOT_ACCOUNT_KEY
ACME account private key in JSON format used by certbot. If this variable is non-empty, its
contents will be written to private_key.json in the respective accounts directory. Note that either
CERTHUB_CERTBOT_ACCOUNT_ID or CERTHUB_CERTBOT_ACCOUNT_DIR is required if this variable
is set.

CERTHUB_CERTBOT_ACCOUNT_REGR
ACME account registration information in JSON format used by certbot. If this variable is non-
empty, its contents will be written to regr.json in the respective accounts directory. Note that either
CERTHUB_CERTBOT_ACCOUNT_ID or CERTHUB_CERTBOT_ACCOUNT_DIR is required if this variable
is set.

CERTHUB_CERTBOT_ACCOUNT_META
ACME account meta information in JSON format used by certbot. If this variable is non-empty,
its contents will be written to meta.json in the respective accounts directory. Note that either

46 Chapter 7. Man Pages

https://github.com/joohoi/acme-dns
https://github.com/cpu/goacmedns

Certhub Documentation

CERTHUB_CERTBOT_ACCOUNT_ID or CERTHUB_CERTBOT_ACCOUNT_DIR is required if this variable
is set.

CERTHUB_CERTBOT_ACCOUNT_ID
ACME account id as used by certbot to identify the account in the form of a 32 character long hex string. This
is equivalent to the last component of an account directory path.

CERTHUB_CERTBOT_ACCOUNT_SERVER
ACME endpoint URL for the given account. Defaults to: https://acme-v02.api.letsencrypt.org/directory

CERTHUB_CERTBOT_CONFIG_DIR
Base directory for certbot configuration. Defaults to: /etc/letsencrypt.

CERTHUB_CERTBOT_ACCOUNT_DIR
Full path to an accounts directory. Defaults to a value computed from CERTHUB_CERTBOT_CONFIG_DIR,
CERTHUB_CERTBOT_ACCOUNT_SERVER and CERTHUB_CERTBOT_ACCOUNT_ID.

7.16.5 Environment (Dehydrated)

It is recommended to specify CERTHUB_DEHYDRATED_ACCOUNT_KEY , CERTHUB_DEHYDRATED_ACCOUNT_REGR
and CERTHUB_DEHYDRATED_ACCOUNT_ID for a production setup. The remaining variables can be ignored in
most situations.

CERTHUB_DEHYDRATED_ACCOUNT_KEY
ACME account private key in PEM format used by dehydrated. If this variable is non-empty, its contents will
be written to account_key.pem in the respective accounts directory.

CERTHUB_DEHYDRATED_ACCOUNT_REGR
ACME account registration information in JSON format used by dehydrated. If this variable is non-empty, its
contents will be written to registration_info.json in the respective accounts directory. set.

CERTHUB_DEHYDRATED_ACCOUNT_ID
ACME account id information in JSON format used by dehydrated. If this variable is non-empty, its contents
will be written to account_id.json in the respective accounts directory.

CERTHUB_DEHYDRATED_ACCOUNT_SERVER
ACME endpoint URL for the given account. Defaults to: https://acme-v02.api.letsencrypt.org/directory

CERTHUB_DEHYDRATED_CONFIG_DIR
Base directory for dehydrated configuration. Defaults to: /etc/dehydrated.

CERTHUB_DEHYDRATED_ACCOUNT_DIR
Full path to an accounts directory. Defaults to a value computed from
CERTHUB_DEHYDRATED_CONFIG_DIR and CERTHUB_DEHYDRATED_ACCOUNT_SERVER.

7.16.6 Environment (Lego)

It is recommended to specify CERTHUB_LEGO_ACCOUNT_EMAIL CERTHUB_LEGO_ACCOUNT_KEY and
CERTHUB_LEGO_ACCOUNT_CONF for a production setup. The remaining variables can be ignored in most situ-
ations.

CERTHUB_LEGO_ACCOUNT_KEY
ACME account private key in PEM format used by lego. If this variable is non-
empty, its contents will be written to ${CERTHUB_LEGO_ACCOUNT_EMAIL}.key in the
respective accounts directory. Note that either CERTHUB_LEGO_ACCOUNT_EMAIL or
CERTHUB_LEGO_ACCOUNT_KEY_DIR/CERTHUB_LEGO_ACCOUNT_KEY_FILE are required if this
variable is set.

7.16. certhub-docker-entry 47

Certhub Documentation

CERTHUB_LEGO_ACCOUNT_CONF
ACME account registration information in JSON format used by lego. If this
variable is non-empty, its contents will be written to account.json in the respec-
tive accounts directory. Note that either CERTHUB_LEGO_ACCOUNT_EMAIL or
CERTHUB_LEGO_ACCOUNT_DIR/CERTHUB_LEGO_ACCOUNT_CONF_FILE are required if this vari-
able is set.

CERTHUB_LEGO_ACCOUNT_EMAIL
ACME account email as used by lego to identify the account.

CERTHUB_LEGO_ACCOUNT_SERVER
ACME endpoint URL for the given account. Defaults to: https://acme-v02.api.letsencrypt.org/directory

CERTHUB_LEGO_DIR
Base directory for lego configuration. Defaults to: ${HOME}/.lego.

CERTHUB_LEGO_ACCOUNT_DIR
Full path to an accounts directory. Defaults to a value computed from CERTHUB_LEGO_DIR,
CERTHUB_LEGO_ACCOUNT_SERVER and CERTHUB_LEGO_ACCOUNT_EMAIL.

CERTHUB_LEGO_ACCOUNT_CONF_FILE
Full path to an accounts config file. Defaults to a value computed from CERTHUB_LEGO_DIR,
CERTHUB_LEGO_ACCOUNT_SERVER and CERTHUB_LEGO_ACCOUNT_EMAIL.

CERTHUB_LEGO_ACCOUNT_KEY_DIR
Full path to an accounts key directory. Defaults to a value computed from CERTHUB_LEGO_DIR,
CERTHUB_LEGO_ACCOUNT_SERVER and CERTHUB_LEGO_ACCOUNT_EMAIL.

CERTHUB_LEGO_ACCOUNT_KEY_FILE
Full path to an accounts key file. Defaults to a value computed from CERTHUB_LEGO_DIR,
CERTHUB_LEGO_ACCOUNT_SERVER and CERTHUB_LEGO_ACCOUNT_EMAIL.

7.16.7 See Also

git-gau-docker-entry(8),

7.17 certhub-hook-lexicon-auth

7.17.1 Synopsis

/usr/local/lib/certhub/certbot-hooks/hook-lexicon-auth

/usr/local/lib/certhub/certbot-hooks/hook-lexicon-cleanup

/usr/local/lib/certhub/dehydrated-hooks/hook-lexicon-auth

7.17.2 Description

A hook script for certbot and dehydrated respectively capable of deploying DNS-01 challenge tokens via
lexicon.

48 Chapter 7. Man Pages

Certhub Documentation

7.17.3 Environment

CERTHUB_LEXICON_PROVIDER
Specify the domain provider which hosts the zone to be used in the DNS challenge.

CERTHUB_LEXICON_CREATE_EXIT_DELAY
Optional delay in seconds after record creation (defaults to 5):

CERTHUB_LEXICON_GLOBAL_ARGS
Optional additional global lexicon arguments: see lexicon(1) for more information.

CERTHUB_LEXICON_PROVIDER_ARGS
Optional additional lexicon provider arguments (e.g. logging): see lexicon(1) for more information.

CERTHUB_LEXICON_DOMAIN
Domain name passed to lexicon to use for the challenge. Defaults to ${domain-to-be-validated}. Customizing
this setting makes sense, e.g. when using CNAME records to redirect _acme-challenge names from the real
domain to a separate zone purpose built for challange validation.

CERTHUB_LEXICON_NAME
Record name to use for the challenge. Defaults to _acme-challenge.${CERTHUB_LEXICON_DOMAIN}.
Customizing this setting makes sense, e.g. when using CNAME records to redirect _acme-challenge names from
the real domain to a separate zone purpose built for challange validation.

7.17.4 See Also

lexicon(1),

7.18 certhub-hook-nsupdate-auth

7.18.1 Synopsis

/usr/local/lib/certhub/certbot-hooks/hook-nsupdate-auth

/usr/local/lib/certhub/certbot-hooks/hook-nsupdate-cleanup

/usr/local/lib/certhub/dehydrated-hooks/hook-nsupdate-auth

7.18.2 Description

A hook script for certbot and dehydrated respectively capable of deploying DNS-01 challenge tokens via
nsupdate.

7.18.3 Environment

CERTHUB_NSUPDATE_ARGS
Arguments passed to nsupdate called from auth/cleanup hooks. Specify the path to the DDNS key used
to update a DNS zone. Example: CERTHUB_NSUPDATE_ARGS=-k /etc/certhub/example.com.
nsupdate.key

CERTHUB_NSUPDATE_SERVER
Contact the specified server. By default nsupdate queries SOA records in order to determine the authoritative
server. Example: CERTHUB_NSUPDATE_SERVER=some-ns.example.com

7.18. certhub-hook-nsupdate-auth 49

Certhub Documentation

CERTHUB_NSUPDATE_TTL
TTL for created DNS records. Defaults to 600.

CERTHUB_NSUPDATE_DOMAIN
Domain name to use for the challenge. Uses _acme-challenge.${domain-to-be-validated} by
default. Customizing this setting makes sense, e.g. when using CNAME records to redirect _acme-challenge
names from the real domain to a separate zone purpose built for challange validation.

7.18.4 See Also

nsupdate(1),

50 Chapter 7. Man Pages

CHAPTER 8

Best Practice

8.1 Generating TLS Keys and Signing Requests

Use a trustworthy machine with good entropy to generate TLS keys.

8.1.1 RSA Keys

SSL Labs recommends a key size of 2048 bits for most use cases. They discourage usage of keys bigger than 3072
bits. Use the following command to generate RSA keys with openssl.

2048 bit RSA
$ openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:2048 -out example-rsa.key.
→˓pem

3072 bit RSA
$ openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:3072 -out example-rsa.key.
→˓pem

8.1.2 ECDSA Keys

Most browsers support secp256r1 (P-256) and secp384r1 (P-384) curves. Use the following command
to generate EC keys with openssl:

P-256 EC key
$ openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -out example-ec.key.
→˓pem

P-384 EC key
$ openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-384 -out example-ec.key.
→˓pem

51

https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices
https://www.ssllabs.com/ssltest/clients.html

Certhub Documentation

8.1.3 Certificate Signing Request

The openssl req utility can be used to generate certificate signing requests suitable for certhub. Note that Let’s
Encrypt ignores anything in the CSR except CN, subjectAltName and the OCSP stapling tls feature flag if present.
Adapt the following example to generate a CSR from the command line without having to craft a openssl.cnf file.

$ openssl req -new -subj "/CN=example.com" \
-addext "subjectAltName = DNS:example.com,DNS:www.example.com" \
-addext "basicConstraints = CA:FALSE" \
-addext "keyUsage = nonRepudiation, digitalSignature, keyEncipherment" \
-addext "tlsfeature = status_request" \ # Remove this line if your TLS server

→˓is not configured for OCSP.
-key example-ec.key.pem -out example-ec.csr.pem

In order to inspect any CSR, use the -text and -noout flags:

$ openssl req -text -noout -in example-ec.csr.pem

8.2 DNS Zone Setup

When using DNS-01 the ACME Client requires access to create and delete TXT records on the _acme-challenge
subdomain of the target domain. In order to reduce risk of compromise of the main DNS zone, it is necessary to serve
challenges from a different DNS zone with separate credentials, or even a dedicated DNS server.

In order to serve the challenge from a different zone, it is necessary to either delegate the _acme-challenge
subdomain to another DNS server using NS records or to alias the subdomain into a dedicated zone using CNAME
records.

8.2.1 Example setup

Services in the following domains should be protected using Let’s Encrypt certificates: www.example.com,
example.com.

Note, many public DNS providers do only support privilege separation on a per-domain level. Thus subdomains
cannot be managed from a different account. In this case it is recommended to simply host challenge zones using a
different public DNS provider. It is recommended to choose one which is supported well by the ACME Client in use.

As an alternative to public DNS providers, there is the option to run a dedicated stripped down non-recursive DNS
server only hosting challenge zones.

8.2.2 Delegation

Assuming that a dedicated DNS service reachable at acme-ns1.example.net is hosting _acme-challenge
zones. The service needs to host one _acme-challenge zone for each target domain. Thus if a certificate should
be requested containing example.com and www.example.com, then the DNS service needs to host two zones.
I.e., _acme-challenge.example.com and _acme-challenge.www.example.com.

In that case the following DNS records need to be added to the main zone:

_acme-challenge.www.example.com. IN NS acme-ns1.example.net
_acme-challenge.example.com. IN NS acme-ns1.example.net

52 Chapter 8. Best Practice

https://letsencrypt.org/docs/challenge-types/#dns-01-challenge

Certhub Documentation

8.2.3 Aliasing

Assuming that there is a DNS zone auth.example.net dedicated to host ACME challenges. One or more DNS
label(s) needs to be choosen in the dedicated DNS zone to host the TXT records. Note that there is no strict rule on
how labels need to be named. In general it is recommended that records in a label are only updated by one ACME
client at a time.

The following DNS records need to be added to the main zone if the label www-example-com should be used to
serve TXT records inside auth.example.com.

_acme-challenge.www.example.com. IN CNAME www-example-com.auth.example.com
_acme-challenge.example.com. IN CNAME www-example-com.auth.example.com

Note: Some ACME clients require advanced configuration to support CNAME records. Otherwise they will attempt to
update records on the main zone.

8.2.4 Further Reading

See also:

• EFF - A Technical Deep Dive: Securing the Automation of ACME DNS Challenge Validation

• GitHub - joohoi/acme-dns

8.3 Certificates for Internal Services

For some sites it is desirable that they do not leak into the surface web. E.g., staging servers for client projects or
internal applications, devices and appliances. All certificates which are issued by Let’s Encrypt are recorded in the
Certificate Transparency Logs.

CT Logs are a popular reconnaissance tool among security analysts, since they can be parsed easily with automated
tools on large scale.

In order to prevent leaking information via CT Logs, the following measures are appropriate: Use wildcard certificates
and a separate domain.

8.3.1 Wildcard Certificates

Wildcard certificates can be issued for exactly one level of subdomains. E.g., a certificate containing the SAN
*.example.com is valid for my-crm.example.com but neither for example.com nor for crm.apps.
example.com.

Thus it is recommended to plan with a flat subdomain structure, especially if subdomains are to be generated in an
automated way.

Note that there is no need to reuse one pair of key/certificate for all services. It is completely possible to issue and
deploy distinct certificates for the same wildcard domain to different hosts, as long as the rate limits are adhered to.

8.3.2 Separate Domain

Instead of using the main domain which is known to the general public, a dedicated domain can be registered and used
for internal purposes. This also simplifies setup of DNS CAA records. E.g., the CAA on a dedicated domain can be
restricted to wildcard certificates only.

8.3. Certificates for Internal Services 53

https://www.eff.org/deeplinks/2018/02/technical-deep-dive-securing-automation-acme-dns-challenge-validation
https://github.com/joohoi/acme-dns/
https://www.certificate-transparency.org/
https://medium.com/@yassineaboukir/automated-monitoring-of-subdomains-for-fun-and-profit-release-of-sublert-634cfc5d7708
https://letsencrypt.org/docs/rate-limits/

Certhub Documentation

54 Chapter 8. Best Practice

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

55

Certhub Documentation

56 Chapter 9. Indices and tables

Index

C
CERTHUB_ACME_DNS_REGISTRATION, 46
CERTHUB_CERT_SEND_COMMAND, 19
CERTHUB_CERTBOT_ACCOUNT_DIR, 46, 47
CERTHUB_CERTBOT_ACCOUNT_ID, 46, 47
CERTHUB_CERTBOT_ACCOUNT_KEY, 46
CERTHUB_CERTBOT_ACCOUNT_META, 46
CERTHUB_CERTBOT_ACCOUNT_REGR, 46
CERTHUB_CERTBOT_ACCOUNT_SERVER, 47
CERTHUB_CERTBOT_CONFIG_DIR, 47
CERTHUB_DEHYDRATED_ACCOUNT_ID, 47
CERTHUB_DEHYDRATED_ACCOUNT_KEY, 47
CERTHUB_DEHYDRATED_ACCOUNT_REGR, 47
CERTHUB_DEHYDRATED_ACCOUNT_SERVER, 47
CERTHUB_DEHYDRATED_CONFIG_DIR, 47
CERTHUB_LEGO_ACCOUNT_CONF, 47
CERTHUB_LEGO_ACCOUNT_CONF_FILE, 48
CERTHUB_LEGO_ACCOUNT_DIR, 48
CERTHUB_LEGO_ACCOUNT_EMAIL, 47, 48
CERTHUB_LEGO_ACCOUNT_KEY, 47
CERTHUB_LEGO_ACCOUNT_KEY_DIR, 47
CERTHUB_LEGO_ACCOUNT_KEY_FILE, 47
CERTHUB_LEGO_ACCOUNT_SERVER, 48
CERTHUB_LEGO_DIR, 48

E
environment file

/etc/certhub/%i.certhub-cert-expiry.env,
41

/etc/certhub/%i.certhub-cert-export.env,
42

/etc/certhub/%i.certhub-cert-reload.env,
43

/etc/certhub/%i.certhub-cert-send.env,
44

/etc/certhub/%i.certhub-certbot-run.env,
38

/etc/certhub/%i.certhub-dehydrated-run.env,
39

/etc/certhub/%i.certhub-lego-run.env,
40

/etc/certhub/%i.certhub-repo-push.env,
45

/etc/certhub/%i.env, 38–45
/etc/certhub/certhub-cert-expiry.env,

41
/etc/certhub/certhub-cert-export.env,

42
/etc/certhub/certhub-cert-reload.env,

43
/etc/certhub/certhub-cert-send.env,

44
/etc/certhub/certhub-certbot-run.env,

38
/etc/certhub/certhub-dehydrated-run.env,

39
/etc/certhub/certhub-lego-run.env,

40
/etc/certhub/certhub-repo-push.env,

45
/etc/certhub/env, 38–45

environment variable
CERTHUB_ACME_DNS_REGISTRATION, 46
CERTHUB_ACME_DNS_REGISTRATION_FILE,

46
CERTHUB_CERT_EXPIRY_MESSAGE, 41
CERTHUB_CERT_EXPIRY_STATUSFILE, 41
CERTHUB_CERT_EXPIRY_TTL, 41
CERTHUB_CERT_EXPORT_DEST, 42
CERTHUB_CERT_EXPORT_RSYNC_ARGS, 42
CERTHUB_CERT_EXPORT_SRC, 42
CERTHUB_CERT_PATH, 38–41
CERTHUB_CERT_RELOAD_COMMAND, 43
CERTHUB_CERT_RELOAD_CONFIG, 43
CERTHUB_CERT_SEND_COMMAND, 19, 44
CERTHUB_CERT_SEND_CONFIG, 44
CERTHUB_CERT_SEND_SRC, 44
CERTHUB_CERTBOT_ACCOUNT_DIR, 46, 47
CERTHUB_CERTBOT_ACCOUNT_ID, 46, 47

57

Certhub Documentation

CERTHUB_CERTBOT_ACCOUNT_KEY, 46
CERTHUB_CERTBOT_ACCOUNT_META, 46
CERTHUB_CERTBOT_ACCOUNT_REGR, 46
CERTHUB_CERTBOT_ACCOUNT_SERVER, 47
CERTHUB_CERTBOT_ARGS, 38
CERTHUB_CERTBOT_CONFIG, 38
CERTHUB_CERTBOT_CONFIG_DIR, 47
CERTHUB_CSR_PATH, 38–40
CERTHUB_DEHYDRATED_ACCOUNT_DIR, 47
CERTHUB_DEHYDRATED_ACCOUNT_ID, 47
CERTHUB_DEHYDRATED_ACCOUNT_KEY, 47
CERTHUB_DEHYDRATED_ACCOUNT_REGR, 47
CERTHUB_DEHYDRATED_ACCOUNT_SERVER,

47
CERTHUB_DEHYDRATED_ARGS, 39
CERTHUB_DEHYDRATED_CONFIG, 39
CERTHUB_DEHYDRATED_CONFIG_DIR, 47
CERTHUB_LEGO_ACCOUNT_CONF, 47
CERTHUB_LEGO_ACCOUNT_CONF_FILE, 48
CERTHUB_LEGO_ACCOUNT_DIR, 48
CERTHUB_LEGO_ACCOUNT_EMAIL, 47, 48
CERTHUB_LEGO_ACCOUNT_KEY, 47
CERTHUB_LEGO_ACCOUNT_KEY_DIR, 47, 48
CERTHUB_LEGO_ACCOUNT_KEY_FILE, 47, 48
CERTHUB_LEGO_ACCOUNT_SERVER, 48
CERTHUB_LEGO_ARGS, 40
CERTHUB_LEGO_CHALLENGE_ARGS, 40
CERTHUB_LEGO_DIR, 40, 48
CERTHUB_LEGO_PREFERRED_CHAIN, 40
CERTHUB_LEXICON_CREATE_EXIT_DELAY,

49
CERTHUB_LEXICON_DOMAIN, 49
CERTHUB_LEXICON_GLOBAL_ARGS, 49
CERTHUB_LEXICON_NAME, 49
CERTHUB_LEXICON_PROVIDER, 49
CERTHUB_LEXICON_PROVIDER_ARGS, 49
CERTHUB_MESSAGE_CERT_TEXTOPTS, 36
CERTHUB_MESSAGE_CSR_TEXTOPTS, 36
CERTHUB_MESSAGE_SUBJECT, 36
CERTHUB_MESSAGE_SUBJECT_ACTION, 36
CERTHUB_MESSAGE_SUBJECT_PREFIX, 36
CERTHUB_NSUPDATE_ARGS, 49
CERTHUB_NSUPDATE_DOMAIN, 50
CERTHUB_NSUPDATE_SERVER, 49
CERTHUB_NSUPDATE_TTL, 49
CERTHUB_REPO, 38–42, 45
CERTHUB_REPO_PUSH_ARGS, 45
CERTHUB_REPO_PUSH_REFSPEC, 45
CERTHUB_REPO_PUSH_REMOTE, 45

58 Index

	Intro
	Configuration
	State
	Replication
	Separation

	Overview
	System architecture
	Controller node setup process
	TLS Server node setup process
	TLS Service setup process

	Installation
	Dependencies
	Install

	Systemd Setup
	Certhub User
	Directory Structure
	Local Repository
	ACME Client Setup
	Systemd Unit Customization
	Certificates
	Certificate Distribution
	Certificate export and service reload
	Sending certificates

	GitLab CI Setup
	Big Picture
	Certificates Repository
	CI Pipeline Repository
	CI Pipeline Configuration
	CI Pipeline Certbot
	CI Pipeline Dehydrated
	CI Pipeline Lego

	Gitlab CI Usage
	Man Pages
	certhub-certbot-run
	certhub-dehydrated-run
	certhub-lego-run
	certhub-cert-expiry
	certhub-message-format
	certhub-send-file
	certhub-status-file
	certhub-certbot-run@.service
	certhub-dehydrated-run@.service
	certhub-lego-run@.service
	certhub-cert-expiry@.service
	certhub-cert-export@.service
	certhub-cert-reload@.service
	certhub-cert-send@.service
	certhub-repo-push@.service
	certhub-docker-entry
	certhub-hook-lexicon-auth
	certhub-hook-nsupdate-auth

	Best Practice
	Generating TLS Keys and Signing Requests
	DNS Zone Setup
	Certificates for Internal Services

	Indices and tables
	Index

